
Basics of File Handling in C

File handing in C is the process in which we create, open, read, write, and close

operations on a file. C language provides different functions such as fopen(), fwrite(),

fread(), fseek(), fprintf(), etc. to perform input, output, and many different C file

operations in our program.

Why do we need File Handling in C?
So far the operations using the C program are done on a prompt/terminal which is not

stored anywhere. The output is deleted when the program is closed. But in the

software industry, most programs are written to store the information fetched from the

program. The use of file handling is exactly what the situation calls for.

In order to understand why file handling is important, let us look at a few features of

using files:

 Reusability: The data stored in the file can be accessed, updated, and deleted

anywhere and anytime providing high reusability.

 Portability: Without losing any data, files can be transferred to another in the

computer system. The risk of flawed coding is minimized with this feature.

 Efficient: A large amount of input may be required for some programs. File

handling allows you to easily access a part of a file using few instructions which

saves a lot of time and reduces the chance of errors.

 Storage Capacity: Files allow you to store a large amount of data without having

to worry about storing everything simultaneously in a program.

Types of Files in C
A file can be classified into two types based on the way the file stores the data. They

are as follows:

 Text Files

 Binary Files

1. Text Files
A text file contains data in the form of ASCII characters and is generally used to

store a stream of characters.

 Each line in a text file ends with a new line character (‘\n’).

 It can be read or written by any text editor.

 They are generally stored with .txt file extension.

 Text files can also be used to store the source code.

2. Binary Files
A binary file contains data in binary form (i.e. 0’s and 1’s) instead of ASCII

characters. They contain data that is stored in a similar manner to how it is stored in

the main memory.

 The binary files can be created only from within a program and their contents can

only be read by a program.

 More secure as they are not easily readable.

 They are generally stored with .bin file extension.

C File Operations
C file operations refer to the different possible operations that we can perform on a

file in C such as:

1. Creating a new file – fopen() with attributes as “a” or “a+” or “w” or “w+”

2. Opening an existing file – fopen()

3. Reading from file – fscanf() or fgets()

4. Writing to a file – fprintf() or fputs()

5. Moving to a specific location in a file – fseek(), rewind()

6. Closing a file – fclose(highlighted text mentions the C function used to perform

the file operations.Functions for C File Operations

File Pointer in C
A file pointer is a reference to a particular position in the opened file. It is used in file

handling to perform all file operations such as read, write, close, etc. We use

the FILE macro to declare the file pointer variable. The FILE macro is defined

inside <stdio.h> header file.

Syntax of File Pointer

FILE* pointer_name;

File Pointer is used in almost all the file operations in C.

Open a File in C
For opening a file in C, the fopen() function is used with the filename or file path

along with the required access modes.

Syntax of fopen()

FILE* fopen(const char *file_name, const char *access_mode);

Parameters

 file_name: name of the file when present in the same directory as the source file.

Otherwise, full path.

 access_mode: Specifies for what operation the file is being opened.

Return Value

 If the file is opened successfully, returns a file pointer to it.

 If the file is not opened, then returns NULL.

File opening modes in C

https://www.geeksforgeeks.org/fseek-in-c-with-example/
https://www.geeksforgeeks.org/c-fopen-function-with-examples/

File opening modes or access modes specify the allowed operations on the file to be

opened. They are passed as an argument to the fopen() function. Some of the

commonly used file access modes are listed below:

Opening

Modes Description

r

Searches file. If the file is opened successfully fopen() loads it into

memory and sets up a pointer that points to the first character in it. If the

file cannot be opened fopen() returns NULL.

rb
 Open for reading in binary mode. If the file does not exist, fopen() returns

NULL.

w

Open for reading in text mode. If the file exists, its contents are

overwritten. If the file doesn’t exist, a new file is created. Returns NULL, if

unable to open the file.

wb
Open for writing in binary mode. If the file exists, its contents are

overwritten. If the file does not exist, it will be created.

a

Searches file. If the file is opened successfully fopen() loads it into
memory and sets up a pointer that points to the last character in it. It opens

only in the append mode. If the file doesn’t exist, a new file is created.

Returns NULL, if unable to open the file.

ab
 Open for append in binary mode. Data is added to the end of the file. If the

file does not exist, it will be created.

r+

Searches file. It is opened successfully fopen() loads it into memory and

sets up a pointer that points to the first character in it. Returns NULL, if

unable to open the file.

rb+
 Open for both reading and writing in binary mode. If the file does not

exist, fopen() returns NULL.

w+

Searches file. If the file exists, its contents are overwritten. If the file
doesn’t exist a new file is created. Returns NULL, if unable to open the

file.

wb+
Open for both reading and writing in binary mode. If the file exists, its

contents are overwritten. If the file does not exist, it will be created.

Opening

Modes Description

a+

Searches file. If the file is opened successfully fopen() loads it into

memory and sets up a pointer that points to the last character in it. It opens

the file in both reading and append mode. If the file doesn’t exist, a new

file is created. Returns NULL, if unable to open the file.

ab+
Open for both reading and appending in binary mode. If the file does not

exist, it will be created.

As given above, if you want to perform operations on a binary file, then you have to

append ‘b’ at the last. For example, instead of “w”, you have to use “wb”, instead of

“a+” you have to use “a+b”.

Example of Opening a File

 C

// C Program to illustrate file opening

#include <stdio.h>

#include <stdlib.h>

int main()

{

 // file pointer variable to store the value returned by

 // fopen

 FILE* fptr;

 // opening the file in read mode

 fptr = fopen("filename.txt", "r");

 // checking if the file is opened successfully

 if (fptr == NULL) {

 printf("The file is not opened. The program will "

 "now exit.");

 exit(0);

 }

 return 0;

}

Output
The file is not opened. The program will now exit.

The file is not opened because it does not exist in the source directory. But the fopen()

function is also capable of creating a file if it does not exist. It is shown below

Create a File in C
The fopen() function can not only open a file but also can create a file if it does not

exist already. For that, we have to use the modes that allow the creation of a file if not

found such as w, w+, wb, wb+, a, a+, ab, and ab+.

FILE *fptr;

fptr = fopen("filename.txt", "w");

Example of Opening a File

 C

// C Program to create a file

#include <stdio.h>

#include <stdlib.h>

int main()

{

 // file pointer

 FILE* fptr;

 // creating file using fopen() access mode "w"

 fptr = fopen("file.txt", "w");

 // checking if the file is created

 if (fptr == NULL) {

 printf("The file is not opened. The program will "

 "exit now");

 exit(0);

 }

 else {

 printf("The file is created Successfully.");

 }

 return 0;

}

Output
The file is created Successfully.

Reading From a File
The file read operation in C can be performed using functions fscanf() or fgets(). Both

the functions performed the same operations as that of scanf and gets but with an

additional parameter, the file pointer. There are also other functions we can use to read

from a file. Such functions are listed below:

Function Description

fscanf()
Use formatted string and variable arguments list to take input from a file.

fgets()
Input the whole line from the file.

fgetc()
Reads a single character from the file.

fgetw() Reads a number from a file.

fread()
Reads the specified bytes of data from a binary file.

So, it depends on you if you want to read the file line by line or character by character.

Example:

FILE * fptr;

fptr = fopen(“fileName.txt”, “r”);

fscanf(fptr, "%s %s %s %d", str1, str2, str3, &year);

char c = fgetc(fptr);

The getc() and some other file reading functions return EOF (End Of File) when they

reach the end of the file while reading. EOF indicates the end of the file and its value

is implementation-defined.

Note: One thing to note here is that after reading a particular part of the file, the file

pointer will be automatically moved to the end of the last read character.

Write to a File
The file write operations can be performed by the functions fprintf() and fputs() with

similarities to read operations. C programming also provides some other functions that

can be used to write data to a file such as:

Function Description

https://www.geeksforgeeks.org/scanf-and-fscanf-in-c/
https://www.geeksforgeeks.org/fgets-gets-c-language/
https://www.geeksforgeeks.org/fgetc-fputc-c/
https://www.geeksforgeeks.org/fread-function-in-c/

Function Description

fprintf()

Similar to printf(), this function use formatted string and varible arguments

list to print output to the file.

fputs()
Prints the whole line in the file and a newline at the end.

fputc()
Prints a single character into the file.

fputw() Prints a number to the file.

fwrite() This functions write the specified amount of bytes to the binary file.

Example:

FILE *fptr ;

fptr = fopen(“fileName.txt”, “w”);

fprintf(fptr, "%s %s %s %d", "We", "are", "in", 2012);

fputc("a", fptr);

Closing a File
The fclose() function is used to close the file. After successful file operations, you

must always close a file to remove it from the memory.

Syntax of fclose()

fclose(file_pointer);
where the file_pointer is the pointer to the opened file.

Example:

FILE *fptr ;

fptr= fopen(“fileName.txt”, “w”);

---------- Some file Operations -------
fclose(fptr);

Examples of File Handing in C
Example 1: Program to Create a File, Write in it, And Close the File

 C

https://www.geeksforgeeks.org/fprintf-in-c/
https://www.geeksforgeeks.org/how-to-write-in-a-file-using-fputs-in-c/
https://www.geeksforgeeks.org/fgetc-fputc-c/

// C program to Open a File,

// Write in it, And Close the File

#include <stdio.h>

#include <string.h>

int main()

{

 // Declare the file pointer

 FILE* filePointer;

 // Get the data to be written in file

 char dataToBeWritten[50] = "GeeksforGeeks-A Computer "

 "Science Portal for Geeks";

 // Open the existing file GfgTest.c using fopen()

 // in write mode using "w" attribute

 filePointer = fopen("GfgTest.c", "w");

 // Check if this filePointer is null

 // which maybe if the file does not exist

 if (filePointer == NULL) {

 printf("GfgTest.c file failed to open.");

 }

 else {

 printf("The file is now opened.\n");

 // Write the dataToBeWritten into the file

 if (strlen(dataToBeWritten) > 0) {

 // writing in the file using fputs()

 fputs(dataToBeWritten, filePointer);

 fputs("\n", filePointer);

 }

 // Closing the file using fclose()

 fclose(filePointer);

 printf("Data successfully written in file "

 "GfgTest.c\n");

 printf("The file is now closed.");

 }

 return 0;

}

Output
The file is now opened.

Data successfully written in file GfgTest.c

The file is now closed.

This program will create a file named GfgTest.c in the same directory as the source

file which will contain the following text: “GeeksforGeeks-A Computer Science

Portal for Geeks”.

Example 2: Program to Open a File, Read from it, And Close the File

 C

// C program to Open a File,

// Read from it, And Close the File

#include <stdio.h>

#include <string.h>

int main()

{

 // Declare the file pointer

 FILE* filePointer;

 // Declare the variable for the data to be read from

 // file

 char dataToBeRead[50];

 // Open the existing file GfgTest.c using fopen()

 // in read mode using "r" attribute

 filePointer = fopen("GfgTest.c", "r");

 // Check if this filePointer is null

 // which maybe if the file does not exist

 if (filePointer == NULL) {

 printf("GfgTest.c file failed to open.");

 }

 else {

 printf("The file is now opened.\n");

 // Read the dataToBeRead from the file

 // using fgets() method

 while (fgets(dataToBeRead, 50, filePointer)

 != NULL) {

 // Print the dataToBeRead

 printf("%s", dataToBeRead);

 }

 // Closing the file using fclose()

 fclose(filePointer);

 printf(

 "Data successfully read from file GfgTest.c\n");

 printf("The file is now closed.");

 }

 return 0;

}

Output
The file is now opened.

GeeksforGeeks-A Computer Science Portal for Geeks

Data successfully read from file GfgTest.c

The file is now closed.

This program reads the text from the file named GfgTest.c which we created in the

previous example and prints it in the console.

Read and Write in a Binary File
Till now, we have only discussed text file operations. The operations on a binary file

are similar to text file operations with little difference.

Opening a Binary File

To open a file in binary mode, we use the rb, rb+, ab, ab+, wb, and wb+ access mode

in the fopen() function. We also use the .bin file extension in the binary filename.

Example
fptr = fopen("filename.bin", "rb");

Write to a Binary File

We use fwrite() function to write data to a binary file. The data is written to the binary

file in the from of bits (0’s and 1’s).

Syntax of fwrite()
size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE
*file_pointer);

Parameters:

 ptr: pointer to the block of memory to be written.

 size: size of each element to be written (in bytes).

 nmemb: number of elements.

 file_pointer: FILE pointer to the output file stream.

Return Value:
 Number of objects written.

Example: Program to write to a Binary file using fwrite()

 C

// C program to write to a Binary file using fwrite()

#include <stdio.h>

#include <stdlib.h>

struct threeNum {

 int n1, n2, n3;

};

int main()

{

 int n;

 // Structure variable declared here.

 struct threeNum num;

 FILE* fptr;

 if ((fptr = fopen("C:\\program.bin", "wb")) == NULL) {

 printf("Error! opening file");

 // If file pointer will return NULL

 // Program will exit.

 exit(1);

 }

 int flag = 0;

 // else it will return a pointer to the file.

 for (n = 1; n < 5; ++n) {

 num.n1 = n;

 num.n2 = 5 * n;

 num.n3 = 5 * n + 1;

 flag = fwrite(&num, sizeof(struct threeNum), 1,

 fptr);

 }

 // checking if the data is written

 if (!flag) {

 printf("Write Operation Failure");

 }

 else {

 printf("Write Operation Successful");

 }

 fclose(fptr);

 return 0;

}

Output
Write Operation Successful

Reading from Binary File

The fread() function can be used to read data from a binary file in C. The data is read

from the file in the same form as it is stored i.e. binary form.

Syntax of fread()
size_t fread(void *ptr, size_t size, size_t nmemb, FILE
*file_pointer);
 Parameters:

 ptr: pointer to the block of memory to read.

 size: the size of each element to read(in bytes).

 nmemb: number of elements.

 file_pointer: FILE pointer to the input file stream.

Return Value:
 Number of objects written.

Example: Program to Read from a binary file using fread()

 C

// C Program to Read from a binary file using fread()

#include <stdio.h>

#include <stdlib.h>

struct threeNum {

 int n1, n2, n3;

};

int main()

{

 int n;

 struct threeNum num;

 FILE* fptr;

 if ((fptr = fopen("C:\\program.bin", "rb")) == NULL) {

 printf("Error! opening file");

 // If file pointer will return NULL

 // Program will exit.

 exit(1);

 }

 // else it will return a pointer to the file.

 for (n = 1; n < 5; ++n) {

 fread(&num, sizeof(struct threeNum), 1, fptr);

 printf("n1: %d\tn2: %d\tn3: %d\n", num.n1, num.n2,

 num.n3);

 }

 fclose(fptr);

 return 0;

}

Output
n1: 1 n2: 5 n3: 6

n1: 2 n2: 10 n3: 11

n1: 3 n2: 15 n3: 16

n1: 4 n2: 20 n3: 21

fseek() in C
If we have multiple records inside a file and need to access a particular record that is

at a specific position, so we need to loop through all the records before it to get the

record. Doing this will waste a lot of memory and operational time. To reduce

memory consumption and operational time we can use fseek() which provides an

easier way to get to the required data. fseek() function in C seeks the cursor to the

given record in the file.

Syntax for fseek()
int fseek(FILE *ptr, long int offset, int pos);

Example of fseek()

 C

// C Program to demonstrate the use of fseek() in C

#include <stdio.h>

int main()

{

 FILE* fp;

 fp = fopen("test.txt", "r");

 // Moving pointer to end

 fseek(fp, 0, SEEK_END);

 // Printing position of pointer

https://www.geeksforgeeks.org/fseek-in-c-with-example/

 printf("%ld", ftell(fp));

 return 0;

}

Output
81

rewind() in C
The rewind() function is used to bring the file pointer to the beginning of the file. It

can be used in place of fseek() when you want the file pointer at the start.

Syntax of rewind()

rewind (file_pointer);

Example

 C

// C program to illustrate the use of rewind

#include <stdio.h>

int main()

{

 FILE* fptr;

 fptr = fopen("file.txt", "w+");

 fprintf(fptr, "Geeks for Geeks\n");

https://www.geeksforgeeks.org/g-fact-82/

 // using rewind()

 rewind(fptr);

 // reading from file

 char buf[50];

 fscanf(fptr, "%[^\n]s", buf);

 printf("%s", buf);

 return 0;

}

Output
Geeks for Geeks

More Functions for C File Operations
The following table lists some more functions that can be used to perform file

operations or assist in performing them.

Functions Description

fopen() It is used to create a file or to open a file.

fclose() It is used to close a file.

fgets() It is used to read a file.

fprintf() It is used to write blocks of data into a file.

https://www.geeksforgeeks.org/c-fopen-function-with-examples/
https://www.geeksforgeeks.org/fgets-gets-c-language/
https://www.geeksforgeeks.org/fprintf-in-c/

Functions Description

fscanf() It is used to read blocks of data from a file.

getc() It is used to read a single character to a file.

putc() It is used to write a single character to a file.

fseek() It is used to set the position of a file pointer to a mentioned location.

ftell() It is used to return the current position of a file pointer.

rewind() It is used to set the file pointer to the beginning of a file.

putw() It is used to write an integer to a file.

getw() It is used to read an integer from a file.

https://www.geeksforgeeks.org/scanf-and-fscanf-in-c/
https://www.geeksforgeeks.org/difference-getchar-getch-getc-getche/
https://www.geeksforgeeks.org/c-library-function-putc/
https://www.geeksforgeeks.org/fseek-in-c-with-example/
https://www.geeksforgeeks.org/ftell-c-example/
https://www.geeksforgeeks.org/g-fact-82/

	Basics of File Handling in C
	Why do we need File Handling in C?
	Types of Files in C
	1. Text Files
	2. Binary Files

	C File Operations
	File Pointer in C
	Syntax of File Pointer

	Open a File in C
	Syntax of fopen()
	Parameters
	Return Value
	File opening modes in C
	Example of Opening a File

	Create a File in C
	Example of Opening a File

	Reading From a File
	Example:

	Write to a File
	Example:

	Closing a File
	Syntax of fclose()
	Example:

	Examples of File Handing in C
	Example 1: Program to Create a File, Write in it, And Close the File
	Example 2: Program to Open a File, Read from it, And Close the File

	Read and Write in a Binary File
	Opening a Binary File
	Write to a Binary File
	Reading from Binary File

	fseek() in C
	Syntax for fseek()
	Example of fseek()

	rewind() in C
	Syntax of rewind()
	Example

	More Functions for C File Operations

